7 research outputs found

    SPECTRAL PARAMETERS FOR FINGER TAPPING QUATIFICATION

    Get PDF
    A miniature inertial sensor placed on fingertip of index finger while performing finger tapping test can be used for an objective quantification of finger tapping motion. Temporal and spatial parameters such as cadence, tapping duration, and tapping angle can be extracted for detailed analysis. However, the mentioned parameters, although intuitive and simple to interpret, do not always provide all the necessary information regarding the subjectā€™s motor performance. Analysis of frequency content of the finger tapping movement can provide crucial information about the patient's condition. In this paper, we present parameters extracted from spectral analysis that we found to be significant for finger tapping assessment. With these parameters, tappingā€™s intra-variability, movement smoothness and anomalies that may occur within the tapping performance can be detected and described, providing significant information for further diagnostics and monitoring progress of the disease or response to therapy

    Quantification of Finger-Tapping Angle Based on Wearable Sensors

    No full text
    We propose a novel simple method for quantitative and qualitative finger-tapping assessment based on miniature inertial sensors (3D gyroscopes) placed on the thumb and index-finger. We propose a simplified description of the finger tapping by using a single angle, describing rotation around a dominant axis. The method was verified on twelve subjects, who performed various tapping tasks, mimicking impaired patterns. The obtained tapping angles were compared with results of a motion capture camera system, demonstrating excellent accuracy. The root-mean-square (RMS) error between the two sets of data is, on average, below 4Ā°, and the intraclass correlation coefficient is, on average, greater than 0.972. Data obtained by the proposed method may be used together with scores from clinical tests to enable a better diagnostic. Along with hardware simplicity, this makes the proposed method a promising candidate for use in clinical practice. Furthermore, our definition of the tapping angle can be applied to all tapping assessment systems

    Reproducibility of "BUDA" multisensor system for gait analysis

    No full text

    Quantification of Finger-Tapping Angle Based on Wearable Sensors

    No full text
    We propose a novel simple method for quantitative and qualitative finger-tapping assessment based on miniature inertial sensors (3D gyroscopes) placed on the thumb and index-finger. We propose a simplified description of the finger tapping by using a single angle, describing rotation around a dominant axis. The method was verified on twelve subjects, who performed various tapping tasks, mimicking impaired patterns. The obtained tapping angles were compared with results of a motion capture camera system, demonstrating excellent accuracy. The root-mean-square (RMS) error between the two sets of data is, on average, below 4Ā°, and the intraclass correlation coefficient is, on average, greater than 0.972. Data obtained by the proposed method may be used together with scores from clinical tests to enable a better diagnostic. Along with hardware simplicity, this makes the proposed method a promising candidate for use in clinical practice. Furthermore, our definition of the tapping angle can be applied to all tapping assessment systems

    Quantification of Finger-Tapping Angle Based on Wearable Sensors

    No full text
    We propose a novel simple method for quantitative and qualitative finger-tapping assessment based on miniature inertial sensors (3D gyroscopes) placed on the thumb and index-finger. We propose a simplified description of the finger tapping by using a single angle, describing rotation around a dominant axis. The method was verified on twelve subjects, who performed various tapping tasks, mimicking impaired patterns. The obtained tapping angles were compared with results of a motion capture camera system, demonstrating excellent accuracy. The root-mean-square (RMS) error between the two sets of data is, on average, below 4Ā°, and the intraclass correlation coefficient is, on average, greater than 0.972. Data obtained by the proposed method may be used together with scores from clinical tests to enable a better diagnostic. Along with hardware simplicity, this makes the proposed method a promising candidate for use in clinical practice. Furthermore, our definition of the tapping angle can be applied to all tapping assessment systems

    An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors

    No full text
    Wearable sensors and advanced algorithms can provide significant decision support for clinical practice. Currently, the motor symptoms of patients with neurological disorders are often visually observed and evaluated, which may result in rough and subjective quantification. Using small inertial wearable sensors, fine repetitive and clinically important movements can be captured and objectively evaluated. In this paper, a new methodology is designed for objective evaluation and automatic scoring of bradykinesia in repetitive finger-tapping movements for patients with idiopathic Parkinson’s disease and atypical parkinsonism. The methodology comprises several simple and repeatable signal-processing techniques that are applied for the extraction of important movement features. The decision support system consists of simple rules designed to match universally defined criteria that are evaluated in clinical practice. The accuracy of the system is calculated based on the reference scores provided by two neurologists. The proposed expert system achieved an accuracy of 88.16% for files on which neurologists agreed with their scores. The introduced system is simple, repeatable, easy to implement, and can provide good assistance in clinical practice, providing a detailed analysis of finger-tapping performance and decision support for symptom evaluation

    The impact of functional electrical stimulation (FES) on freezing of gait (FOG) in patients with Parkinson's disease

    No full text
    International audiencePatients with Parkinson's disease (PD) frequently exhibit problems with gait initiation, maintaining rhythmicity of the gait, turning, and may suffer from motor blocks, i.e., freezing of gait (FOG). All these issues contribute to higher risk of stumbling and falling. In this study, we tested the influence of functional electrical stimulation (FES) on gait in 9 patients with PD with history of freezing episodes. Patients were walking along the given path comprising standing up from the chair, passing through narrow doorways and turning. Besides regular walking, protocol also comprised walking while carrying tray with glass of water (dual-tasking). Patients' peroneal nerve of the leg which was estimated to be from the weaker side was stimulated during the swing phase in moments when gait "normal" pattern was impaired. Stimulation was triggered automatically based on heel switch placed in the shoe. Gait sequences with and without FES were recorded successively, and these gait patterns were compared afterwards. Results showed that FES decreased duration of double support phase and variability of stride duration and stride length. While stimulated, two patients did not experience motor blocks in a few places along the path where they otherwise had problems with FOG
    corecore